Precast concrete is widely used in modern buildings due to its high efficiency, durability and economy. As a key component for the transportation and installation of precast components, lifting anchors directly affect construction safety and efficiency.

 

precast concrete lifting anchors

 

What are precast concrete lifting anchors?

Lifting anchors are pre-buried or post-installed load-bearing components used to lift and install precast concrete components (such as wall panels, beams, columns, composite slabs, etc.). It must have sufficient strength to withstand dynamic loads during lifting, transportation and installation.

 

Main types of lifting anchors

1. Pre-embedded anchors: embedded before concrete pouring

- Lifting Loops – suitable for vertical lifting (such as wall panels, stairs).

- Threaded Inserts – can be connected to the lifting anchor by bolts after the concrete hardens.

- Plate Anchors – used for heavy components (such as beams and columns).

2. Post-installed anchors: installed after the concrete hardens

- Bolt-on Anchors – fixed by high-strength bolts.

- Undercut Anchors – provide high pull-out resistance.

3. Special anchors

- Swivel Anchors – allow angle adjustment during lifting.

- Lifting Clutches – suitable for double T-slabs and hollow slabs.

 

Key design points

1. Load calculation

- To consider:

- Static load (self-weight of component)

- Dynamic load (hoisting impact, usually calculated as 2 times of static load)

- Safety factor (generally ≥3, in accordance with EN 1992-4 or ACI 318)

2. Anchor arrangement

- Should be located at the center of gravity of the component to avoid tilting.

- Multiple anchors need to be evenly stressed to prevent local overload.

3. Concrete strength - The anchor depth must meet the pull-out requirements.

- The concrete strength during hoisting must reach the design value (usually ≥20MPa).

4. Anti-corrosion treatment

- For outdoor or corrosive environments, hot-dip galvanized or stainless steel anchors should be used.

 

precast concrete lifting anchorsprecast concrete lifting anchors

 

Installation specifications and precautions

1. Construction according to specifications - strictly follow the burial depth and spacing requirements provided by the manufacturer.

2. Inspection before lifting - confirm that the anchor is free of cracks, deformation or rust.

3. Matching lifting equipment - the rated load of the sling and shackle must be greater than the weight of the component.

4. Smooth lifting - avoid sudden acceleration or sudden stop to reduce impact force.

5. Post-processing - exposed anchors need to be removed or protected from rust.

 

 

Magnets are an integral part of our daily lives, found in everything from refrigerator magnets to high-tech medical devices. But did you know that there are three main types of magnets? Understanding these three main types of magnets and their properties can help us make smarter choices in our daily lives and work. Whether it's the long-lasting stability of permanent magnets, the flexible controllability of electromagnets, or the instant response of temporary magnets, each type has its own unique advantages and application scenarios. With the development of materials science, magnets in the future will become more powerful, efficient, and environmentally friendly.

 

magnets

 

1. Permanent magnets (permanent magnets)

Permanent magnets are the most common type of magnets. They can maintain magnetism for a long time without the help of external power.

The main characteristics are: Once magnetized, they can maintain magnetism for a long time, do not require external energy to maintain the magnetic field,

Have fixed north and south poles

Common types:

- Neodymium magnets (rare earth magnets): the strongest permanent magnets currently, composed of neodymium, iron and boron

- Ferrite magnets (ceramic magnets): low cost, corrosion resistance, but weak magnetism

- Alnico magnets: high temperature resistance, but easy to demagnetize

Application areas:

- Speakers and headphones

- Motors and generators

- Magnetic therapy products

- Fridge magnets and toys

Advantages and disadvantages:

- Advantages: easy to use, no energy required, good stability

- Disadvantages: fixed magnetic strength, may demagnetize at high temperatures

 

2. Electromagnet

An electromagnet is a temporary magnet that generates a magnetic field through an electric current. When the current is interrupted, the magnetic field disappears.

Its working principle is as follows: an electromagnet consists of a coil of wire wrapped around an iron core. When current passes through the coil, a magnetic field is generated, and the iron core strengthens this magnetic field.

Features: The magnetic field strength can be adjusted by the current size, the direction of the magnetic pole can be changed by the current direction, and it only exhibits magnetism when power is applied

Application areas:

- Cranes (for handling scrap metal)

- Magnetic resonance imaging (MRI) equipment

- Relays and contactors

- Particle accelerators

Advantages and disadvantages:

- Advantages: The magnetic field strength is adjustable and can be turned on/off at any time

- Disadvantages: Requires continuous power supply and may generate heat

 

3. Temporary magnets

Temporary magnets are materials that exhibit magnetism under certain conditions. When the conditions disappear, the magnetism will also weaken or disappear.

Main characteristics: only exhibit magnetism when an external magnetic field exists, usually made of soft magnetic materials, easy to magnetize and demagnetize

Common materials:

- Soft iron

- Certain stainless steels

- Nickel and its alloys

Application areas:

- Core materials for electromagnets

- Transformer cores

- Temporary magnetic tools

- Magnetic shielding materials

Advantages and disadvantages:

- Advantages: easy to control, low energy loss

- Disadvantages: cannot maintain magnetism for a long time

 

How to choose the right magnet? When choosing a magnet type, the following factors need to be considered:

1. Required magnetic field strength: strong magnetic field applications may require neodymium magnets or electromagnets

2. Use environment: high temperature environments may require AlNiCo magnets

3. Cost considerations: ferrite magnets have the lowest cost

4. Whether adjustment is required: electromagnets should be selected for applications that require magnetic adjustment

 

keyboard_arrow_up